Plasma proprotein convertase subtilisin/kexin type 9: a marker of LDL apolipoprotein B-100 catabolism?

نویسندگان

  • Dick C Chan
  • Gilles Lambert
  • P Hugh R Barrett
  • Kerry-Anne Rye
  • Esther M M Ooi
  • Gerald F Watts
چکیده

BACKGROUND Experimental studies suggest that proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important regulator of LDL metabolism because of its ability to facilitate degradation of the LDL receptor. We investigated the association between plasma PCSK9 concentration and LDL apolipoprotein B-100 (apo B-100) metabolism in men with a wide range of body mass index values. METHODS We used GC-MS to study the kinetics of LDL apo B-100 after intravenous administration of deuterated leucine and analyzed the data by compartmental modeling. The plasma PCSK9 concentration was measured by ELISA. RESULTS Univariate regression analysis revealed the plasma PCSK9 concentration to be significantly and positively correlated with cholesterol (r = 0.543; P = 0.011), LDL cholesterol (r = 0.543; P = 0.011), apo B-100 (r = 0.548; P = 0.010), and LDL apo B-100 concentrations (r = 0.514; P = 0.023), and inversely correlated with the LDL apo B-100 fractional catabolic rate (FCR) (r = -0.456; P = 0.038). The association between plasma PCSK9 concentration and the LDL apo B-100 FCR remained statistically significant after adjusting for age, obesity, plasma insulin, homeostasis model assessment score, and dietary energy; however, this association had borderline significance after adjusting for plasma lathosterol. CONCLUSIONS In men, variation in plasma PCSK9 concentration influences the catabolism of LDL apo B-100. This finding appears to be independent of obesity, insulin resistance, energy intake, and age.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9.

OBJECTIVE We have reported further heterogeneity in familial autosomal-dominant hypercholesterolemia (FH) related to mutation in proprotein convertase subtilisin/kexin type 9 (PCSK9) gene previously named neural apoptosis regulated convertase 1 (Narc-1). Our aim was to define the metabolic bases of this new form of hypercholesterolemia. METHODS AND RESULTS In vivo kinetics of apolipoprotein B...

متن کامل

Plasma proprotein convertase subtilisin/kexin type 9 levels and the risk of first cardiovascular events.

AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that enhances degradation of the LDL receptor. While agents that inhibit PCSK9 markedly reduce atherogenic lipoproteins and show great promise for event reduction, it is unknown whether plasma PCSK9 levels predict incident cardiovascular events. METHODS AND RESULTS In a nested case-control evaluation conducted in...

متن کامل

Loss of plasma proprotein convertase subtilisin/kexin 9 (PCSK9) after lipoprotein apheresis.

RATIONALE Lipoprotein apheresis (LA) reduces low-density lipoprotein (LDL) levels in patients with severe familial hypercholesterolemia (FH). We have recently reported that >30% of plasma proprotein convertase subtilisin/kexin 9 (PCSK9) is bound to LDL, thus we predicted that LA would also reduce plasma PCSK9 levels by removing LDL. OBJECTIVE Pre- and post-apheresis plasma from 6 patients wit...

متن کامل

Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor.

Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG...

متن کامل

Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor.

OBJECTIVE proprotein convertase subtilisin/kexin type 9 (PCSK9) negatively regulates the low-density lipoprotein (LDL) receptor (LDLR) in hepatocytes and therefore plays an important role in controlling circulating levels of LDL-cholesterol. To date, the relationship between PCSK9 and metabolism of apolipoprotein B (apoB), the structural protein of LDL, has been controversial and remains to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical chemistry

دوره 55 11  شماره 

صفحات  -

تاریخ انتشار 2009